Cornell Virtual Workshop
1
Cornell Virtual Workshop is a comprehensive training resource for high performance computing topics. The Cornell University Center for Advanced Computing (CAC) is a leader in the development and deployment of Web-based training programs. Our Cornell Virtual Workshop learning platform is designed to enhance the computational science skills of researchers, accelerate the adoption of new and emerging technologies, and broaden the participation of underrepresented groups in science and engineering. Over 350,000 unique visitors have accessed Cornell Virtual Workshop training on programming languages, parallel computing, code improvement, and data analysis. The platform supports learning communities around the world, with code examples from national systems such as Frontera, Stampede2, and Jetstream2.
GPU Acceleration in Python
0
This tutorial explains how to use Python for GPU acceleration with libraries like CuPy, PyOpenCL, and PyCUDA. It shows how these libraries can speed up tasks like array operations and matrix multiplication by using the GPU. Examples include replacing NumPy with CuPy for large datasets and using PyOpenCL or PyCUDA for more control with custom GPU kernels. It focuses on practical steps to integrate GPU acceleration into Python programs.
Benchmarking with a cross-platform open-source flow solver, PyFR
0
What is PyFR and how does it solve fluid flow problems?
PyFR is an open-source Computational Fluid Dynamics (CFD) solver that is based on Python and employs the high-order Flux Reconstruction technique. It effectively solves fluid flow problems by utilizing streaming architectures, making it suitable for complex fluid dynamics simulations.
How does PyFR achieve scalability on clusters with CPUs and GPUs?
PyFR achieves scalability by leveraging distributed memory parallelism through the Message Passing Interface (MPI). It implements persistent, non-blocking MPI requests using point-to-point (P2P) communication and organizes kernel calls to enable local computations while exchanging ghost states. This design approach allows PyFR to efficiently operate on clusters with heterogeneous architectures, combining CPUs and GPUs.
Why is PyFR valuable for benchmarking clusters?
PyFR's exceptional performance has been recognized by its selection as a finalist in the ACM Gordon Bell Prize for High-Performance Computing. It demonstrates strong-scaling capabilities by effectively utilizing low-latency inter-GPU communication and achieving strong-scaling on unstructured grids. PyFR has been successfully benchmarked with up to 18,000 NVIDIA K20X GPUs on Titan, showcasing its efficiency in handling large-scale simulations.
GPU Computing Workshop Series for the Earth Science Community
0
GPU training series for scientists, software engineers, and students, with emphasis on Earth science applications.
The content of this course is coordinated with the 6 month series of GPU Training sessions starting in Februrary 2022. The NVIDIA High Performance Computing Software Development Kit (NVHPC SDK) and CUDA Toolkit will be the primary software requirements for this training which will be already available on NCAR's HPC clusters as modules you may load. This software is free to download from NVIDIA by navigating to the NVHPC SDK Current Release Downloads page and the CUDA Toolkit downloads page. Any provided code is written specifically to build and run on NCAR's Casper HPC system but may be adapted to other systems or personal machines. Material will be updated as appropriate for the future deployment of NCAR's Derecho cluster and as technology progresses.
Examples of Thrust code for GPU Parallelization
0
Some examples for writing Thrust code. To compile, download the CUDA compiler from NVIDIA. This code was tested with CUDA 9.2 but is likely compatible with other versions. Before compiling change extension from thrust_ex.txt to thrust_ex.cu. Any code on the device (GPU) that is run through a Thrust transform is automatically parallelized on the GPU. Host (CPU) code will not be. Thrust code can also be compiled to run on a CPU for practice.