Affinity Groups

Logo Name Description Tags Join
High Performance Visualization This group first and foremost is a space for those experimenting and learning to leverage High Performance Compute environments for visualization. To be a part of this community you don't need to be… affinity-groupcomputer-graphicsvisualization +3 more tags Login to join
FABRIC Testbed FABRIC is a US-based nation-wide testbed supporting advanced networking, application and security research funded by the US National Science Foundation. Members get help with using FABRIC and… distributed-computingethernetgpu +4 more tags Login to join
Jetstream-2 Jetstream2 is a transformative update to the NSF’s science and engineering cloud infrastructure and provides 8 petaFLOPS of supercomputing power to simplify data analysis, boost discovery, and… aimachine-learningjetstream +13 more tags Login to join

Announcements

Upcoming Events & Trainings

No events or trainings are currently scheduled.

Topics from Ask.CI

Loading topics from Ask.CI ...

Knowledge Base Resources

Title Category Tags Skill Level
ACCESS HPC Workshop Series Learning deep-learningmachine-learningneural-networks +12 more tags Beginner, Intermediate
ACCESS KB Guide - Expanse Docs expansecomposable-systemsgpu Beginner, Intermediate, Advanced
ACES: Charliecloud Containers for Scientific Workflows (Tutorial) Learning ACESTAMUSCRATCH +10 more tags Beginner

Engagements

GPU-accelerated Ice Sheet Flow Modeling
University of North Dakota

Sea levels are rising (3.7 mm/year and increasing!)! The primary contributor to rising sea levels is enhanced polar ice discharge due to climate change. However, their dynamic response to climate change remains a fundamental uncertainty in future projections. Computational cost limits the simulation time on which models can run to narrow the uncertainty in future sea level rise predictions. The project's overarching goal is to leverage GPU hardware capabilities to significantly alleviate the computational cost and narrow the uncertainty in future sea level rise predictions. Solving time-independent stress balance equations to predict ice velocity or flow is the most computationally expensive part of ice-sheet simulations in terms of computer memory and execution time. The PI developed a preliminary ice-sheet flow GPU implementation for real-world glaciers. This project aims to investigate the GPU implementation further, identify bottlenecks and implement changes to justify it in the price to performance metrics to a "standard" CPU implementation. In addition, develop a performance portable hardware (or architecture) agnostic implementation.

Status: Complete

People with Expertise

Devin Bayly

University of Arizona

Programs

ACCESS CSSN, Campus Champions, CCMNet

Roles

research computing facilitator, Affinity Group Leader, CCMNet

User

Expertise

Jordan Hayes

University of California - Riverside

Programs

Campus Champions

Roles

research computing facilitator

Placeholder headshot

Expertise

Jeff Dusenberry

University of Massachusetts Boston

Programs

Campus Champions, Northeast

Roles

mentor, research computing facilitator

Placeholder headshot

Expertise

People with Interest

Paul Hoover

University of California, San Diego

Programs

ACCESS CSSN

Roles

cssn, CIP

Placeholder headshot

Interests

Morgan Newton

Santa Monica College

Programs

ACCESS CSSN

Roles

student-facilitator

Picture of Morgan Newton

Interests

Xiaoqin Huang

Rice University

Programs

ACCESS CSSN

Roles

mentor, research computing facilitator, research software engineer, cssn

xqhuang at Rice

Interests