Relion - Cryo-EM structure determination software
2
RELION (REgularised LIkelihood OptimisatioN, pronounced rely-on) is a stand-alone software package developed by Sjors Scheres' group at the MRC Laboratory of Molecular Biology. It employs an empirical Bayesian approach for electron cryo-microscopy (cryo-EM) structure determination, specifically for refining multiple 3D reconstructions or 2D class averages.
Introduction to Python for Digital Humanities and Computational Research
1
This documentation contains introductory material on Python Programming for Digital Humanities and Computational Research. This can be a go-to material for a beginner trying to learn Python programming and for anyone wanting a Python refresher.
Useful R Packages for Data Science and Statistics
1
This Udacity article listed the most frequently used R packages for data science and statistics. For each package, the article provided the link to its official documentation. It will be a great start point if you want to start your data science journey in R.
Managing Python Packages on an HPC Cluster
1
This workshop will go into the different ways python packages can be managed in a cluster environment using conda and python virtual environments both in batch mode from the command line and with Jupyter Notebooks and Jupyter Lab on the cluster. The examples will be run on the GMU HOPPER Cluster.
Science Gateway Tool/Web App Template (Jupyter Notebook + ipywidgets)
0
Use this template to turn any science gateway workflow into a web application!
Master's in Data Science Program Guide - TechGuide
0
A master’s degree in data science helps prepare professionals to take the next career step. This article will focus primarily on data science, a graduate degree in this field, and a data scientist or data analyst career. With many employers preferring a master’s degree in data science for those seeking to fill roles as data scientists or analysts, we will discuss the data science master’s degree in detail.
Optimizing Research Workflows - A Documentation of Snakemake
0
Snakemake is a powerful and versatile workflow management system that simplifies the creation, execution, and management of data analysis pipelines. It uses a user-friendly, Python-based language to define workflows, making it particularly valuable for automating and reproducibly managing complex computational tasks in research and data analysis.
Introduction to P4-DPDK
0
Network packet processing faces significant performance challenges due to kernel overheads. These issues have become more pronounced with the rapid growth of network traffic. To address these challenges, the Data Plane Development Kit (DPDK) was developed. DPDK bypasses the kernel and operates directly in user space, offering significant improvements in performance and latency for packet processing tasks. However, DPDK's steep learning curve presents a barrier to entry for developers and network administrators. In recent years, P4 has emerged as a language specifically designed for expressing packet processing data paths. Building on this development, P4-DPDK has been introduced as a new technology that bridges P4 and DPDK. It allows developers to create P4 code which is then translated into a DPDK pipeline, combining the expressiveness of P4 with the performance benefits of DPDK. This lab series offers a hands-on experience on the basics of P4-DPDK.
Bioinformatics Workflow Management with Nextflow
0
Nextflow is an open-source, domain-specific language and workflow manager designed for the execution and coordination of scientific and data-intensive computational workflows. It was specifically created to address the challenges faced by researchers and scientists when dealing with complex and scalable computational pipelines, particularly in fields such as bioinformatics, genomics, and data analysis.
Here provided some links to start with.
Research Software Development in JupyterLab: A Platform for Collaboration Between Scientists and RSEs
0
Iterative Programming takes place when you can explore your code and play with your objects and functions without needing to save, recompile, or leave your development environment. This has traditionally been achieved with a REPL or an interactive shell. The magic of Jupyter Notebooks is that the interactive shell is saved as a persistant document, so you don't have to flip back and forth between your code files and the shell in order to program iteratively.
There are several editors and IDE's that are intended for notebook development, but JupyterLab is a natural choice because it is free and open source and most closely related to the Jupyter Notebooks/iPython projects. The chief motivation of this repository is to enable an IDE-like development environment through the use of extensions. There are also expositional notebooks to show off the usefulness of these features.
Python Data and Viz Training (CCEP Program)
0
HPCwire
0
HPCwire is a prominent news and information source for the HPC community. Their website offers articles, analysis, and reports on HPC technologies, applications, and industry trends.
FreeSurfer Tutorials
0
The official MGH / Harvard tutorial page for FreeSurfer. The FreeSurfer group has provided and designed a series of tutorials for using FreeSurfer and for getting acquainted with the concepts needed to perform its various modes of analysis and processing of MRI data. The tutorials are designed to be followed along in a terminal window where commands can be copy/pasted instead of typed.
Recommended Libraries for Cyberinfrastructure Users Developing Jupyter Notebooks
0
This repository contains information about Jupyter Widgets and how they can be used to develop interactive workflows, data dashboards, and web applications that can be run on HPC systems and science gateways. Easy to build web applications are not only useful for scientists. They can also be used by software engineers and system admins who want to quickly create tools tools for file management and more!
R for Data Science
0
R for Data Science is a comprehensive resource for individuals looking to harness the power of the R programming language for data analysis, visualization, and statistical modeling. Whether you're a beginner or an experienced data scientist, this guide will help you unlock the full potential of R in the realm of data science.
Biopython Tutorial
0
The Biopython Tutorial and Cookbook website is a dedicated online resource for users in the field of computational biology and bioinformatics. It provides a collection of tutorials and practical examples focused on using the Biopython library.
The website offers a series of tutorials that cover various aspects of Biopython, catering to users with different levels of expertise. It also includes code snippets and examples, and common solutions to common challenges in computational biology.
How the Little Jupyter Notebook Became a Web App: Managing Increasing Complexity with nbdev
0
A tutorial entitled "How the Little Jupyter Notebook Became a Web App: Managing Increasing Complexity with nbdev" presented at SciPy 2023 in Austin, TX. This tutorial is hosted in a series of Jupyter Notebooks which can be accessed in the click of a button using Binder. See the README for more information.
FSL Lectures
0
This is the official University of Oxford FSL group lecture page. This includes information on upcoming and past courses (online and in-person), as well as lecture materials. Available lecture materials includes slides and recordings on using FSL, MR physics, and applications of imaging data.
Data Analysis with R for Educators
0
This webinar series is an orientation to R. We start with an overview of R’s history and place in the larger data science ecosystem. Next, we introduce the R Studio user interface and how to access R’s excellent documentation. Finally, we present the fundamental concepts you need to use the R environment and language for data analysis. Along the way, we compare R script files (.R) to R Notebook (.Rmd) files and show how the features of R Notebook support better communication and encourage more dynamic engagement with statistical analysis and code. It is helpful to be familiar with tabular data analysis using statistical software, database tools, or spreadsheet programs.
Workshop materials, including setup directions and slides are available at https://github.com/CornellCAC/r_for_edu/ The Rstudio Cloud project used in the workshop is https://rstudio.cloud/project/4044219.
Research Software Engineering Training Materials
0
An ongoing collection of RSE training material, workshops, and resources. We are compiling this list as a starting point for future activities. We are especially seeking material that goes beyond basic research computing competency (e.g. what The Carpentries does so well) and is general enough to span multiple domains. Specific tools and technologies used only in one domain, or applicable to only one subset of computing (i.e. HPC) are typically too narrowly focused. When in doubt, submit it to be included or reach out and we’d be happy to discuss.
Online Bachelor's in Data Science Program Guide - TechGuide
0
The realm of data science is one that onlookers regard with curiosity and respect. There are a lot of unknowns in this area of study that only recently became hugely relevant. It is important to get the facts on how expertise in data science is transforming the world. This article features what a bachelor’s degree means in today’s market and the future.
MATLAB bioinformatics toolbox
0
Bioinformatics Toolbox provides algorithms and apps for Next Generation Sequencing (NGS), microarray analysis, mass spectrometry, and gene ontology. Using toolbox functions, you can read genomic and proteomic data from standard file formats such as SAM, FASTA, CEL, and CDF, as well as from online databases such as the NCBI Gene Expression Omnibus and GenBank.
A survey on datasets for fairness-aware machine learning
0
The research paper provides an overview of various datasets that have been used to study fairness in machine learning. It discusses the characteristics of these datasets, such as their size, diversity, and the fairness-related challenges they address. The paper also examines the different domains and applications covered by these datasets.
Weka
0
Weka is a collection of machine learning algorithms for data mining tasks. It contains tools for data preparation, classification, regression, clustering, association rules mining, and visualization.
Neurodesk
0
Neurodesk provides a containerised data analysis environment to facilitate reproducible analysis of neuroimaging data. Analysis pipelines for neuroimaging data typically rely on specific versions of packages and software, and are dependent on their native operating system. These dependencies mean that a working analysis pipeline may fail or produce different results on a new computer, or even on the same computer after a software update. Neurodesk provides a platform in which anyone, anywhere, using any computer can reproduce your original research findings given the original data and analysis code.