Relion - Cryo-EM structure determination software
2
RELION (REgularised LIkelihood OptimisatioN, pronounced rely-on) is a stand-alone software package developed by Sjors Scheres' group at the MRC Laboratory of Molecular Biology. It employs an empirical Bayesian approach for electron cryo-microscopy (cryo-EM) structure determination, specifically for refining multiple 3D reconstructions or 2D class averages.
Introduction to Python for Digital Humanities and Computational Research
1
This documentation contains introductory material on Python Programming for Digital Humanities and Computational Research. This can be a go-to material for a beginner trying to learn Python programming and for anyone wanting a Python refresher.
Useful R Packages for Data Science and Statistics
1
This Udacity article listed the most frequently used R packages for data science and statistics. For each package, the article provided the link to its official documentation. It will be a great start point if you want to start your data science journey in R.
Data Analysis with R for Educators
0
This webinar series is an orientation to R. We start with an overview of R’s history and place in the larger data science ecosystem. Next, we introduce the R Studio user interface and how to access R’s excellent documentation. Finally, we present the fundamental concepts you need to use the R environment and language for data analysis. Along the way, we compare R script files (.R) to R Notebook (.Rmd) files and show how the features of R Notebook support better communication and encourage more dynamic engagement with statistical analysis and code. It is helpful to be familiar with tabular data analysis using statistical software, database tools, or spreadsheet programs.
Workshop materials, including setup directions and slides are available at https://github.com/CornellCAC/r_for_edu/ The Rstudio Cloud project used in the workshop is https://rstudio.cloud/project/4044219.
Samtools Documentation
0
Samtools is a suite of programs for interacting with high-throughput sequencing data, especially in the SAM/BAM format. It offers various utilities for processing, analyzing, and managing sequence data generated from next-generation sequencing (NGS) experiments. Samtools is widely used in bioinformatics and genomics research for tasks such as read alignment, variant calling, and data manipulation.
How the Little Jupyter Notebook Became a Web App: Managing Increasing Complexity with nbdev
0
A tutorial entitled "How the Little Jupyter Notebook Became a Web App: Managing Increasing Complexity with nbdev" presented at SciPy 2023 in Austin, TX. This tutorial is hosted in a series of Jupyter Notebooks which can be accessed in the click of a button using Binder. See the README for more information.
Python Data and Viz Training (CCEP Program)
0
Research Software Engineering Training Materials
0
An ongoing collection of RSE training material, workshops, and resources. We are compiling this list as a starting point for future activities. We are especially seeking material that goes beyond basic research computing competency (e.g. what The Carpentries does so well) and is general enough to span multiple domains. Specific tools and technologies used only in one domain, or applicable to only one subset of computing (i.e. HPC) are typically too narrowly focused. When in doubt, submit it to be included or reach out and we’d be happy to discuss.
HPCwire
0
HPCwire is a prominent news and information source for the HPC community. Their website offers articles, analysis, and reports on HPC technologies, applications, and industry trends.
Numpy - a Python Library
0
Numpy is a python package that leverages types and compiled C code to make many math operations in Python efficient. It is especially useful for matrix manipulation and operations.
Awesome Jupyter Widgets (for building interactive scientific workflows or science gateway tools)
0
A curated list of awesome Jupyter widget packages and projects for building interactive visualizations for Python code
Introduction to P4-DPDK
0
Network packet processing faces significant performance challenges due to kernel overheads. These issues have become more pronounced with the rapid growth of network traffic. To address these challenges, the Data Plane Development Kit (DPDK) was developed. DPDK bypasses the kernel and operates directly in user space, offering significant improvements in performance and latency for packet processing tasks. However, DPDK's steep learning curve presents a barrier to entry for developers and network administrators. In recent years, P4 has emerged as a language specifically designed for expressing packet processing data paths. Building on this development, P4-DPDK has been introduced as a new technology that bridges P4 and DPDK. It allows developers to create P4 code which is then translated into a DPDK pipeline, combining the expressiveness of P4 with the performance benefits of DPDK. This lab series offers a hands-on experience on the basics of P4-DPDK.
Science Gateway Tool/Web App Template (Jupyter Notebook + ipywidgets)
0
Use this template to turn any science gateway workflow into a web application!
Recommended Libraries for Cyberinfrastructure Users Developing Jupyter Notebooks
0
This repository contains information about Jupyter Widgets and how they can be used to develop interactive workflows, data dashboards, and web applications that can be run on HPC systems and science gateways. Easy to build web applications are not only useful for scientists. They can also be used by software engineers and system admins who want to quickly create tools tools for file management and more!
R for Data Science
0
R for Data Science is a comprehensive resource for individuals looking to harness the power of the R programming language for data analysis, visualization, and statistical modeling. Whether you're a beginner or an experienced data scientist, this guide will help you unlock the full potential of R in the realm of data science.
Research Software Development in JupyterLab: A Platform for Collaboration Between Scientists and RSEs
0
Iterative Programming takes place when you can explore your code and play with your objects and functions without needing to save, recompile, or leave your development environment. This has traditionally been achieved with a REPL or an interactive shell. The magic of Jupyter Notebooks is that the interactive shell is saved as a persistant document, so you don't have to flip back and forth between your code files and the shell in order to program iteratively.
There are several editors and IDE's that are intended for notebook development, but JupyterLab is a natural choice because it is free and open source and most closely related to the Jupyter Notebooks/iPython projects. The chief motivation of this repository is to enable an IDE-like development environment through the use of extensions. There are also expositional notebooks to show off the usefulness of these features.
CI Computing Module For All
0
Computing Module: Introduces fundamental concepts and skills of Cyberinfrastructure (CI) and High-Performance Computing (HPC) to lower the barrier to becoming CI users in disaster management research. The module will cover the critical topics of CI and HPC with hands-on sessions.
Disaster Data Module: Introduces concepts of geospatial big data in disaster management. Students will learn how to access and process disaster data.
Geospatial Analytic Module: Introduces geospatial analytics skills to address real-world challenges in disaster management. The module will use the data introduced in the Disaster Data Module and cover various geospatial analytics topics such as geosimulation, spatial optimization, network analysis, terrain analysis, Geospatial Artificial Intelligence (GeoAI), social sensing, and CyberGIS.