R for Research Scientists
0
A book for researchers who contribute code to R projects: This booklet is the result of my work with the Social Cognition for Social Justice lab. It was developed in response to questions I was getting from students; both grad students that were making software design decisions, and undergraduates who were using things like version control for the first time. Although many tutorials and resources exist for these topics, there was not a single source that I thought covered just enough material to build up to the workflow used by the lab without extraneous detail.
ACCESS Video Learning Center
0
A library of short videos about ACCESS allocations, resources and support.
Conda
0
Conda is a popular package management system. This tutorial introduces you to Conda and walks you through managing Python, your environment, and packages.
Campus Champions Home Page
0
Campus Champions foster a dynamic environment for a diverse community of research computing and data professionals sharing knowledge and experience in digital research infrastructure.
Oakridge Leadership Computing Facility (OLCF) Training Events and Archive
0
Upcoming training events and archives of training materials detailing general HPC best practices as well as how to use OLCF resources and services.
Active inference textbook
0
This textbook is the first comprehensive treatment of active inference, an integrative perspective on brain, cognition, and behavior used across multiple disciplines including computational neurosciences, machine learning, artificial intelligence, and robotics. It was published in 2022 and it's open access at this time. The contents in this textbook should be educational to those who want to understand how the free energy principle is applied to the normative behavior of living organisms and who want to widen their knowledge of sequential decision making under uncertainty.
Scikit-Learn: Easy Machine Learning and Modeling
0
Scikit-learn is free software machine learning library for Python. It has a variety of features you can use on data, from linear regression classifiers to xg-boost and random forests. It is very useful when you want to analyze small parts of data quickly.
ConnectCI
0
Connect.Cybinfrastructure is a family of portals, each representing a program that is serving a segment of the research computing and data community. Each portal provides program-specific information, as well a custom "view" into a common database. The portal was originally developed to support project workflows and a knowledge base of self service learning resources for the Northeast Cyberteam. Subsequently, it was expanded to provide support to multiple cyberteams and other research computing communities of practice. We welcome additional communities, please contact us if you are interested in participating. Central to the Portal is an extensive and ever-evolving tagging infrastructure which informs every aspect of the Portal. The tag taxonomy was initially developed by the Northeast Cyberteam to categorize subject matter relevant to practitioners of Research Computing Facilitation and is ever changing due to the frequent introduction of new technology in domains that characterize the field of research computing.
Biopython Tutorial
0
The Biopython Tutorial and Cookbook website is a dedicated online resource for users in the field of computational biology and bioinformatics. It provides a collection of tutorials and practical examples focused on using the Biopython library.
The website offers a series of tutorials that cover various aspects of Biopython, catering to users with different levels of expertise. It also includes code snippets and examples, and common solutions to common challenges in computational biology.
Why Mentoring Matters and How to Get Started
0
Describes effective mentorship (both ways).
AHPCC documentary
0
This link is a documentary website to use AHPCC.
Neocortex Documentation
0
Neocortex is a new supercomputing cluster at the Pittsburgh Supercomputing Center (PSC) that features groundbreaking AI hardware from Cerebras Systems.
Creating a Mobile Application
0
Goes through in detail on how to build an application that can run on Android and IOS devices, using Qt Creator to develop Qt Quick applications. Goes through the setting up, creation, configuration, optimization, and overall deployment. This provides the fundamental basis, need to click around on the site for more specifics.
Geocomputation with R (Free Reference Book)
0
Below is a link for a book that focuses on how to use "sf" and "terra" packages for GIS computations. As of 5/1/2023, this book is up to date and examples are error free. The book has a lot of information but provides a good overview and example workflows on how to use these tools.
High Performance Computing (HPC) 101 - Cluster
0
High Performance Computing (HPC) Cluster
Navier-Stokes Cahn-Hilliard (NSCH) for MOOSE Framework
0
The MOOSE Navier-Stokes Cahn-Hilliard (NSCH) application is a library for implementing simulation tools that solve the Navier-Stokes Cahn-Hilliard equations with non-matching densities using Galerkin finite element methods with a residual-based stabilization scheme.
Trusted CI Resources Page
0
Very helpful list of external resources from Trusted CI
The Theory Behind Neural Networks (Very Simplified)
0
This video by the YouTube channel 3Blue1Brown provides a very simplified introduction to the theory behind neural networks. This tutorial is perfect for those that don't have much linear algebra or machine learning background and are eager to step into the realm of ML!
Spatial Data Science in the Cloud (Alpine HPC) using Python
0
Spatial Data Science is a growing field across a wide range of industries and disciplines. The open-source programming language Python has many libraries that support spatial analysis, but what do you do when your computer is unable to tackle the massive file sizes of high-resolution data and the computing power required in your analysis?
There materials have been prepared to teach you spatial data science and how to execute your analysis using a high-performance computer (HPC).
File management of Visual Studio Code on clusters
0
Visual Studio Code, commonly known as VSCode, is a popular tool used by programmers worldwide. It serves as a text editor and an Integrated Development Environment (IDE) that supports a wide variety of programming languages. One of its key features is its extensive library of extensions. These extensions add on to the basic functionalities of VSCode, making coding more efficient and convenient.
However, there's a catch. When these extensions are installed and used frequently, they generate a multitude of files. These files are typically stored in a folder named .vscode-extension within your home directory. On a cluster computing facility such as the FASTER and Grace clusters at Texas A&M University, there's a limitation on how many files you can have in your home directory. For instance, the file number limit could be 10000, while the .vscode-extension directory can hold around 4000 temporary files even with just a few extensions. Thus, if the number of files in your home directory surpasses this limit due to VSCode extensions, you might face some issues. This restriction can discourage users from taking full advantage of the extensive features and extensions offered by the VSCode editor.
To overcome this, we can shift the .vscode-extension directory to the scratch space. The scratch space is another area in the cluster where you can store files and it usually has a much higher limit on the number of files compared to the home directory. We can perform this shift smoothly using a feature called symbolic links (or symlinks for short). Think of a symlink as a shortcut or a reference that points to another file or directory located somewhere else.
Here's a step-by-step guide on how to move the .vscode-extension directory to the scratch space and create a symbolic link to it in your home directory:
1. Copy the .vscode-extension directory to the scratch space: Using the cp command, you can copy the .vscode-extension directory (along with all its contents) to the scratch space. Here's how:
cp -r ~/.vscode-extension /scratch/user
Don't forget to replace /scratch/user with the actual path to your scratch directory.
2. Remove the original .vscode-extension directory: Once you've confirmed that the directory has been copied successfully to the scratch space, you can remove the original directory from your home space. You can do this using the rm command:
rm -r ~/.vscode-extension
It's important to make sure that the directory has been copied to the scratch space successfully before deleting the original.
3. Create a symbolic link in the home directory: Lastly, you'll create a symbolic link in your home directory that points to the .vscode-extension directory in the scratch space. You can do this as follows:
ln -s /scratch/user/.vscode-extension ~/.vscode-extension
By following this process, all the files generated by VSCode extensions will be stored in the scratch space. This prevents your home directory from exceeding its file limit. Now, when you access ~/.vscode-extension, the system will automatically redirect you to the directory in the scratch space, thanks to the symlink. This method ensures that you can use VSCode and its various extensions without worrying about hitting the file limit in your home directory.
Federated CI Resources
0
Discussion about contributing cycles to the Open Science Grid.
Trinity Tutorial for Transcriptome Assembly
0
Trinity is one of the most popular tool to assemble transcripts from RNA-Seq short reads. In this tutorial, we will cover the basic usage of Trinity, best practice and common problems.
FreeSurfer Tutorials
0
The official MGH / Harvard tutorial page for FreeSurfer. The FreeSurfer group has provided and designed a series of tutorials for using FreeSurfer and for getting acquainted with the concepts needed to perform its various modes of analysis and processing of MRI data. The tutorials are designed to be followed along in a terminal window where commands can be copy/pasted instead of typed.
DeepChem
0
DeepChem is an open-source library built on TensorFlow and PyTorch. It is helpful in applying machine learning algorithms to molecular data.
Examples of code using JSON nlohmann header only Library for C++
0
This code showcases how to work with the header-only nlohmann JSON library for C++. In order to compile, change the extensions from json_test.txt to json_test.cpp and test.txt to test.json. You must also download the header files from https://github.com/nlohmann/json. Complilation instructions are at the bottom of json_test. This code is very helpful for creating config files, for example.